Neural Network Application on Foliage Plant Identification

نویسندگان

  • Abdul Kadir
  • Lukito Edi Nugroho
  • Adhi Susanto
  • Paulus Insap Santosa
چکیده

Several researches in leaf identification did not include color information as features. The main reason is caused by a fact that they used green colored leaves as samples. However, for foliage plants—plants with colorful leaves, fancy patterns in their leaves, and interesting plants with unique shape—color and also texture could not be neglected. For example, Epipremnum pinnatum ‘Aureum’ and Epipremnum pinnatum ‘Marble Queen’ have similar patterns, same shape, but different colors. Combination of shape, color, texture features, and other attribute contained on the leaf is very useful in leaf identification. In this research, Polar Fourier Transform and three kinds of geometric features were used to represent shape features, color moments that consist of mean, standard deviation, skewness were used to represent color features, texture features are extracted from GLCMs, and vein features were added to improve performance of the identification system. The identification system uses Probabilistic Neural Network (PNN) as a classifier. The result shows that the system gives average accuracy of 93.0833% for 60 kinds of foliage plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf Identification Using a Deep Convolutional Neural Network

Convolutional neural networks (CNNs) have become popular especially in computer vision in the last few years because they achieved outstanding performance on different tasks, such as image classifications. We propose a ninelayer CNN for leaf identification using the famous Flavia and Foliage datasets. Usually the supervised learning of deep CNNs requires huge datasets for training. However, the...

متن کامل

Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Experiments of Zernike Moments for Leaf Identification

So far, plant identification has challenges for several researchers. Various methods and features have been proposed. However, there are still many approaches could be investigated to develop robust plant identification systems. This paper reports several experiments in using Zernike moments to build foliage plant identification systems. In this case, Zernike moments were combined with other fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.5829  شماره 

صفحات  -

تاریخ انتشار 2011